Potensi Serat Lobak Putih (Raphanus sativus L.) sebagai Agen Penurun Kolesterol: Studi In Vitro Menggunakan UV-Vis
Main Article Content
Abstract
Hiperkolesterolemia merupakan faktor risiko utama penyakit kardiovaskular yang menjadi penyebab kematian tertinggi di dunia. Pendekatan non-farmakologis berbasis serat pangan menjadi strategi alternatif yang menjanjikan untuk penatalaksanaan hiperkolesterolemia. Penelitian ini bertujuan untuk mengevaluasi kapasitas pengikatan kolesterol oleh serat lobak putih (Raphanus sativus L.) secara in vitro menggunakan spektrofotometri UV-Vis. Serat lobak putih dipersiapkan melalui proses hidrolisis dengan H₂SO₄ dan NaOH, kemudian diuji dengan larutan kolesterol 200 ppm yang telah direaksikan dengan reagen FeCl₃. Pengujian dilakukan dengan tiga variasi konsentrasi serat (0,1 g, 0,2 g, dan 0,3 g) dan tiga interval waktu inkubasi (60, 120, dan 180 menit). Absorbansi diukur menggunakan spektrofotometer UV-Vis pada panjang gelombang 450 nm. Hasil penelitian menunjukkan bahwa serat lobak putih mampu menurunkan konsentrasi kolesterol dengan persentase penurunan tertinggi sebesar 7,2% pada konsentrasi serat 0,3 g dengan waktu inkubasi 15 menit, dan 20,2% pada konsentrasi serat 0,3 g dengan waktu inkubasi 180 menit. Kapasitas pengikatan kolesterol meningkat secara konsisten seiring dengan peningkatan konsentrasi serat dan durasi inkubasi. Data kurva kalibrasi menunjukkan hubungan linear yang sangat baik (R² = 0,9943). Kesimpulannya, serat lobak putih memiliki potensi nyata sebagai agen penurun kolesterol melalui mekanisme pengikatan asam empedu. Temuan ini memberikan dasar ilmiah untuk pengembangan lobak putih sebagai pangan fungsional dalam pencegahan dan penatalaksanaan hiperkolesterolemia, meskipun penelitian in vivo dan uji klinis masih diperlukan untuk mengonfirmasi efektivitas biologis.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Abdelhameed, M. F., & Bashandy, S. A. E. (2022). Hypolipidemic Effects Of Red Radish (Raphanus Sativus) Seed Oil In Rat Fed High-Fat Diet: Its Phytochemical Characterization. Egyptian Journal of Chemistry, 65(8), 557–566. https://doi.org/10.21608/ejchem.2022.111758.5074
Anwar, O., Aziz, H. M. I., Khan, A. M., Ramzan, R., Shafi, S., & Mushtaq, Z. (2024). Effect of Raphanus Sativus (Radish) Leaf Extract and High Doses of Atorvastatin on Lipid Profile. Annals of Punjab Medical College, 18(2), 141–144. https://doi.org/10.29054/apmc/2024.1543
Bakr, A. F., & Farag, M. A. (2023). Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS Omega, 8(28), 24680–24694. https://doi.org/10.1021/acsomega.3c01121
Banach, M., Surma, S., & Toth, P. P. (2023). 2023: The year in cardiovascular disease – the year of new and prospective lipid lowering therapies. Can we render dyslipidemia a rare disease by 2024? Archives of Medical Science, 19(6), 1602–1615. https://doi.org/10.5114/aoms/174743
Carrera-Alvarado, G., Toldrá, F., & Mora, L. (2023). Bile acid-binding capacity of peptide extracts obtained from chicken blood hydrolysates using HPLC. LWT, 173, 114381. https://doi.org/https://doi.org/10.1016/j.lwt.2022.114381
Castro-Torres, I. G., Naranjo-Rodríguez, E. B., Domínguez-Ortíz, M. Á., Gallegos-Estudillo, J., & Saavedra-Vélez, M. V. (2012). Antilithiasic and hypolipidaemic effects of Raphanus sativus L. var. niger on mice fed with a lithogenic diet. Journal of Biomedicine & Biotechnology, 2012, 161205. https://doi.org/10.1155/2012/161205
Dharmawan, V. F., Rahmawati, I., Sanjaya, A. R., Dewi, B. E., Saepudin, E., & Ivandini, T. A. (2025). A High Selective and Sensitive Spectrophotometric Cholesterol Detection Using β-Cyclodextrin/Fe3O4 Composite as the Identification Agent. International Journal of Technology, 16(2).
Dhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2012). Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255–266. https://doi.org/10.1007/s13197-011-0365-5
Di Ciaula, A., Garruti, G., Lunardi Baccetto, R., Molina-Molina, E., Bonfrate, L., Wang, D. Q.-H., & Portincasa, P. (2017). Bile Acid Physiology. Annals of Hepatology, 16, S4–S14. https://doi.org/10.5604/01.3001.0010.5493
Feng, Y., & Xu, D. (2023). Short-chain fatty acids are potential goalkeepers of atherosclerosis. Frontiers in Pharmacology, 14, 1271001. https://doi.org/10.3389/fphar.2023.1271001
Ghavami, A., Ziaei, R., Talebi, S., Barghchi, H., Nattagh-Eshtivani, E., Moradi, S., Rahbarinejad, P., Mohammadi, H., Ghasemi-Tehrani, H., Marx, W., & Askari, G. (2023). Soluble Fiber Supplementation and Serum Lipid Profile: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Advances in Nutrition (Bethesda, Md.), 14(3), 465–474. https://doi.org/10.1016/j.advnut.2023.01.005
Gupta, J., Abosaoda, M. K., Shukla, M., Ballal, S., Kumar, A., Chahar, M., Saini, S., Kapila, I., & Hadpoori, A. (2025). Effect of soluble fiber supplementation on lipid parameters in subjects with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Prostaglandins & Other Lipid Mediators, 176, 106939. https://doi.org/https://doi.org/10.1016/j.prostaglandins.2024.106939
Hemati Matin, H. R., Shariatmadari, F., Karimi Torshizi, M. A., & Chiba, L. I. (2016). In vitro bile acid-binding capacity of dietary fibre sources and their effects with bile acid on broiler chicken performance and lipid digestibility. British Poultry Science, 57(3), 348–357. https://doi.org/10.1080/00071668.2016.1163522
Kahlon, T., Chui, M.-C. M., & Chui, M.-C. M. (2018). A Review – In Vitro Bile Acid Binding of Various Vegetables. Medical Research Archives; Vol 6 No 2 (2018): Vol.6 Issue 2 February 2018DO - 10.18103/Mra.V6i2.1686 . https://esmed.org/MRA/mra/article/view/1686
Kahlon, T. S., & Chiu, M.-C. M. (2018). In Vitro Bile Acid Binding of Various Vegetables Introduction. Medical Research Archives, 6(2), issue. http://journals.ke-i.org/index.php/mra
Kong, D., Yu, S., Tian, J., Zhao, W., Wang, L., & Zhou, H. (2022). Phytochemical investigation on Raphanus sativus L. Biochemical Systematics and Ecology, 105, 104488. https://doi.org/https://doi.org/10.1016/j.bse.2022.104488
Kongo-Dia-Moukala, J. U., Zhang, H., & Irakoze, P. C. (2011). In vitro binding capacity of bile acids by defatted corn protein hydrolysate. International Journal of Molecular Sciences, 12(2), 1066–1080. https://doi.org/10.3390/ijms12021066
Li, T., & Chiang, J. Y. L. (2009). Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Research, 2009, 501739. https://doi.org/10.1155/2009/501739
Massa, M., Compari, C., & Fisicaro, E. (2022). On the mechanism of the cholesterol lowering ability of soluble dietary fibers: Interaction of some bile salts with pectin, alginate, and chitosan studied by isothermal titration calorimetry. Frontiers in Nutrition, Volume 9-2022. https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.968847
Michael O’Riordan. (2025). CVD Still the Leading Cause of Death and Disease Globally. Https://Www.Tctmd.Com/. https://www.tctmd.com/news/cvd-still-leading-cause-death-and-disease-globally
Nuranjumi, N., & Wijaya, J. I. (2022). Penatalaksanaan Ny. M Usia 58 Tahun Dengan Hiperkolesterolemia Melalui Pendekatan Dokter Keluarga. Jurnal Penelitian Perawat Profesional, 4(1), 257–270.
Olivia Walther. (2025). Report: Cardiovascular Diseases Caused 1 in 3 Global Deaths in 2023. Https://Www.Acc.Org/. https://www.acc.org/About-ACC/Press-Releases/2025/09/23/19/19/Report-Cardiovascular-Diseases-Caused-1-in-3-Global-Deaths-in-2023
Palekar, S., Waghwani, B., Essaji, H., & Kalambe, J. (2022). Quantitative analysis for detection of cholesterol using colorimetric platform. NeuroQuantology, 20(9), 2024–2030. https://doi.org/10.48047/nq.2022.20.9.nq44233
Rosés, C., Garcia-Ibañez, P., Agudelo, A., Viadel, B., Tomás-Cobos, L., Gallego, E., Carvajal, M., Milagro, F. I., & Barceló, A. (2023). Effects of Glucosinolate-Enriched Red Radish (Raphanus sativus) on In Vitro Models of Intestinal Microbiota and Metabolic Syndrome-Related Functionalities. ACS Omega, 8(26), 23373–23388. https://doi.org/10.1021/acsomega.2c08128
Salim, R., & Dkk. (2022). Sosialisasi Pangan Sehat Bagi Remaja Di Smp Yos Sudarso , Padang ( the Healthy Food Socialization for Adolescents in Smp Yos Sudarso , Padang ). Jurnal Abdikemas, 4(2), 101–107. https://doi.org/10.36086/j.abdikemas.v4i2
Shimizu, H., Masujima, Y., Ushiroda, C., Mizushima, R., Taira, S., Ohue-Kitano, R., & Kimura, I. (2019). Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific Reports, 9(1), 16574. https://doi.org/10.1038/s41598-019-53242-x
Thamizharasi, S., Vellaisamy, S., Kumaran, P. R. V. S., & Chetan, A. (2024). Pharmacognostical and phytochemical screening of leaves of Raphanus sativus linn. Asian Journal of Pharmaceutical Research, 14(1), 25–32.
Toro, M.-T., Fustos-Toribio, R., Ortiz, J., Becerra, J., Zapata, N., & López-Belchí, M. D. (2024). Antioxidant Responses and Phytochemical Accumulation in Raphanus Species Sprouts through Elicitors and Predictive Models under High Temperature Stress. Antioxidants (Basel, Switzerland), 13(3). https://doi.org/10.3390/antiox13030333
Uda’a, R., Dahliah, Edward Pandu Wiriansya, Rahmawati, & Rezky Putri Indarwati. (2023). Pengaruh Terapi Bekam Terhadap Kadar Kolesterol Total Pada Pasien Hiperkolesterolemia di Klinik Hamdalah Makassar. Fakumi Medical Journal: Jurnal Mahasiswa Kedokteran, 3(8), 563–572. https://doi.org/10.33096/fmj.v3i8.295
van Bennekum, A. M., Nguyen, D. V, Schulthess, G., Hauser, H., & Phillips, M. C. (2005). Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. The British Journal of Nutrition, 94(3), 331–337. https://doi.org/10.1079/bjn20051498
Zhu, W.-H., Zhao, Z.-M., Guo, X., & Chen, H. (2009). [Study of cholesterol concentration based on serum UV-visible absorption spectrum]. Guang pu xue yu guang pu fen xi = Guang pu, 29(4), 1004–1007